## Shear Stresses in R.C.C. beams

Shear Stresses in R.C.C. beam (Reinforced cement concrete beam), Stress Based Approach (Elastic Theory), IS Code Approach SHEAR STRESSES IN R.C.C. BEAMS Stress Based Approach (Elastic Theory) R.C.C. is a composite materials so the exact shear distribution as per elastic theory is very complex. It is shown in Fig. 5.2(b) by the hatched portion of the curve.It is parabolic in the compression zone with zero at the top and maximum at the neutral axis. The value of shear-stress is constant in the tensile zone and is equal to the maximum shear-stress (q) because the concrete, below the neutral axis (tensile zone) is assumed to be cracked and neglected. The maximum value of shear stress (q) as per elastic theory is given by $q=\frac{V}{bjd}$ where             V = shear force at the section b and d = dimensions of the section j = Lever arm depth factor IS Code Approach As per IS code…

Continue Reading Shear Stresses in R.C.C. beams
Characteristic Strength of Materials

Learn : Characteristic Strength of Materials :Characteristic Strength of Concrete, Characteristic Strength of Steel. and Characteristic Load or ultimate load CHARACTERISTIC VALUES  (REFER CLAUSE 36, IS CODE) Characteristic Strength of Materials The characteristic strength is based on the statistical analysis of the test results because there are variations in the strength of the material used. In order to simplify the analysis, it may be assumed that the variation in strength follows a normal distribution curve which is symmetric about the mean value as shown below in Fig. 3.1. Therefore, characteristic strength = Mean strength - k S where S is the standard deviation, k=1.64, corresponding to 5% probability $\therefore f_{ck}=f_{m} - 1.64 S$  Characteristic Strength of Concrete The term characteristic strength means that value of strength of material below which not more than 5% of the test results are expected to fall. It is denoted by fck is N/mm2. The value…