Strength of material(SOM)

Strength of material(SOM)

Strength of material(SOM):

strength of materials,

measurement in engineering of the capacity of metal, wood, concrete, and other materials to withstand stress and strain. Stress is the internal force exerted by one part of an elastic body upon the adjoining part, and strain is the deformation or change in dimension occasioned by stress. When a body is subjected to pull, it is said to be under tension, or tensional stress, and when it is being pushed, i.e., is supporting a weight, it is under compression, or compressive stress. Shear, or shearing stress, results when a force tends to make part of the body or one side of a plane slide past the other. Torsion, or torsional stress, occurs when external forces tend to twist a body around an axis. Materials are considered to be elastic in relation to an applied stress if the strain disappears after the force is removed. The elastic limit is the maximum stress a material can sustain and still return to its original form. According to Hooke’s law, the stress created in an elastic material is proportional to strain, within the elastic limit (see elasticity

). In calculating the dimensions of materials required for specific application, the engineer uses working stresses that are ultimate strengths, or elastic limits, divided by a quantity called factor of safety. In laboratories materials are frequently “tested to destruction.” They are deliberately overloaded with the particular force that acts against the property or strength to be measured. Changes in form are measured to the millionth of an inch. Static tests are conducted to determine a material’s elastic limit, ductility, hardness, reaction to temperature change, and other qualities. Dynamic tests are those in which the material is exposed to a combination of expected operating circumstances including impact (e.g., a shell against a steel tank), vibration, cyclic stress, fluctuating loads, and fatigue. Polarized light, X rays, ultrasonic waves, and microscopic examination are some of the means of testing materials.

TYPES OF BEAMS

Types of beam

Learn: Types of beam: in strength of material, Cantilever beam, Simply supported beams,  Overhanging beam, Fixed beams,and Continuous beam. The following are the Important types of beam Types of Beam 1. Cantilever beam, 2. Simply supported beam, 3. Overhanging beam, 4. Fixed beams, and 5. Continuous beam. 1. Cantilever beam A beam which is fixed …

Types of beam Read More »

Stresses and Strain

Stresses and strain

Learn Stresses and strain, unit of stress,Type of stresses,Tensile stress,Compressive stress,Tensile strain,compressive strain,Shear stress and shear strain Stress: The force of resistance per unit area, offered by a body against deformation is known as stress. The external force acting on the body is called the load or force. The load is applied on the body …

Stresses and strain Read More »

Learn about Simply Supported Beam : Overhang to One Side : Point Load

Simply Supported Beam : Overhang to One Side : Point Load : (Fig. 3.20) Simply supported – a beam supported on the ends which are free to rotate and have no moment resistance Over hanging – a simple beam extending beyond its support on one end. Point loads are concentrated loads applied along the span …

Learn about Simply Supported Beam : Overhang to One Side : Point Load Read More »

Simply Supported Beam : U.D.L. over the whole span

A beam, Simply Supported Beam : U.D.L. over the whole span is a structural element that primarily resists loads applied laterally to the beam’s axis. Its mode of deflection is primarily by bending. Classification based on supports In engineering, beams are of several types: Simply supported – a beam supported on the ends which are free to rotate and have no moment …

Simply Supported Beam : U.D.L. over the whole span Read More »

Equivalent and effective Lengths of Columns

The effective column length can be defined as the length of an equivalent pin-ended column having the same load-carrying capacity as the member under consideration.The smaller the effective length of a particular column,the smaller its danger of lateral buckling and the greater its load carrying capacity. It must be recognized that column ends in practice …

Equivalent and effective Lengths of Columns Read More »

Bending moment and shear force diagram of a cantilever beam

In this article Learn :cantilever beam Bending moment diagram B.M.D. and shear force diagram S.F.D. of a cantilever beam having point load at the end,several point loads,U.D.L. Over Whole Span ,U.D.L. not over the whole span,U.D.L. from support to some distance,U.D.L. Somewhere on the beam,Combination of Point Loads and U.D.L. BENDING MOMENT AND SHEAR FORCE …

Bending moment and shear force diagram of a cantilever beam Read More »

Shopping Cart
  • Your basket is empty.
%d bloggers like this: